MAGNETIC EXTENSOMETER

GEOKON®

MODEL 1900

Model 1900-11 Reed-Switch Probe and Index Marker.

APPLICATIONS

The Model 1900 Magnetic Extensometer is designed for the measurement of settlement or heave of soft ground in or around...

- Excavations
- Foundations

- Dams
- Embankments
- Sheet piles and slurry walls
- Tunnels

OPERATING PRINCIPLE

The Model 1900 Magnetic Extensometer is designed to measure settlement or heave of soft ground under the influence of loading or unloading due to the construction of embankments, fills, buildings, and structures.

A reed-switch probe is used in conjunction with magnetic anchors positioned at various depths in a borehole drilled in soft ground, or positioned inside fill material as it is placed on the original ground surface. A 1" sch. 80 PVC access tube or a 70 mm OD Inclinometer casing passes through the various anchors and

ADVANTAGES AND LIMITATIONS

The design of the Model 1900 Magnetic Extensometer provides a means for determining the total displacement and the displacement for each inter-anchor zone.

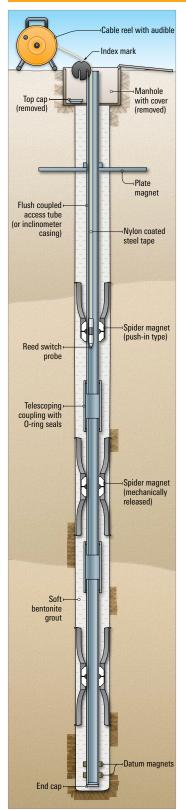
In most cases the bottom of the access tube, or inclinometer casing, is deep enough to be located in solid ground. A datum magnet anchored to the bottom of the access tube, or inclinometer casing, provides a stable benchmark to which all the other anchor measurements are referred allows the reed-switch probe to be lowered inside the tube on the end of a nylon-coated steel graduated tape.

The steel tape contains two conductors which connect the reed switch inside the probe to a light and a buzzer located at the surface inside the tape reel. When the probe is positioned opposite an anchor, the magnet in the anchor causes the reed switch to close and the buzzer to sound. The tape (which is graduated in V_{10} in or mm) is then read opposite an index mark located at the top of the access tube, or inclinometer casing.

to in order to calculate the absolute settlement of each anchor point relative to the benchmark.

If the bottom of the access tube, or inclinometer casing, cannot be located in the solid ground then it will be necessary to reference the position of each anchor to the top of the access tube, or inclinometer casing, and to transfer this elevation to an external benchmark by normal level surveying techniques.

Model 1900-11, shown with Index Mark and Reed-Switch Probe in 1" pipe.



Model 1900-7A Anchor, shown before and after release on 1" access tube.

Model 1900-7B Anchor, shown before and after release on 6600 Inclinometer casing.

SYSTEM COMPONENTS

Anchors are of three types. Those used in fills are shaped like square or circular plates; in boreholes a "spider" anchor is used, which has six mechanically activated leaf spring arms. When installed, the arms are held in a closed position next to the access tube, or inclinometer casing. When the anchor is at its correct location inside the borehole, a release mechanism is actuated, and the arms spring out and grip the sides of the borehole.

A third type of anchor is similar to the spider type described above, except that it has only three arms and is installed inside the borehole by pushing it down around the access tube, using setting rods, until it is at the correct depth. The spring-loaded arms exert a continuous outward force and scrape along the borehole walls as they are pushed into the hole.

Datum magnets are fixed to the bottom of the access tube or inclinometer casing and serve as a reference or datum that is assumed to be in a fixed position, i.e., below the zone of settlement. The positions of all the magnetic anchors above are referenced to the datum magnets to calculate the amount of settlement in the various inter-anchor zones. If the datum magnets cannot be located in stable ground then it will be necessary to periodically survey the top of the access tube, or inclinometer casing.

The access tube comprises lengths of 1" Sch. 80 flush-coupled PVC pipe. Where large settlements are anticipated, telescoping sections should be incorporated into the access tube column (see illustration at left).

Cable Lengths 30, 50, 100, 150, 200 m; 100, 125, 200, 300 ft Resolution 1mm Repeatability +3 mm Temperature Range -30 °C to +80 °C Probe Material Stainless Stee **Probe Dimensions** 178 × 19 mm (L × Ø) PVC 1" sch. 80 (33 mm 0.D.) Access Tube Inclinometer Casing¹ 70 mm 0.D 1 m (460 mm fully compressed) **Telescoping Section** Plate Magnet Material PVC **Plate Magnet Dimensions** 300 mm × 300 mm × 9.5 mm Spider Magnet Material (body) PVC (legs) Hardened 17-7 SS 1900-7A Spider Magnet Dimensions (closed) 445 × 70 × 34 mm (L × 0.D. × I.D.) (released) $445 \times 165 \times 34$ mm (L × 0.D. × I.D.) 1900-7B Spider Magnet Dimensions (closed) $445 \times 115 \times 75$ mm (L × 0.D. × I.D) (released) 445 × 165 × 75 mm (L × 0.D. × I.D.) Leaf Spring (Leg) Stiffness > 20N PVC **Datum Magnet Material Datum Magnet Dimensions** $54 \times 60 \times 34$ mm (L × 0.D. × I.D.) **Borehole Size** 102 to 152 mm

¹Refer to Model 6400, 6500, and 6600 data sheets for inclinometer casing specifications.

ORDERING INFORMATION

SPECIFICATIONS

1900-1-10: Flush coupled access tube, 1" SCH 80 PVC, 10' / 3 m length standard.
1900-1-5: Flush coupled access tube, 1" SCH 80 PVC, 5' / 1.5 m length standard.
1900-2: Telescoping coupling, Total length: 1 m (allows for 0.54 m of compression).
1900-4: Access tube bottom end cap.

1900-5A: Datum Ring Magnet for 1" PVC pipe.

1900-5B: Datum Ring Magnet for 2.75" Glue and Snap casing.

1900-5C: Datum Ring Magnet for 3.34" Glue and Snap casing.

1900-6A: Plate Magnet for 1" PVC pipe.

1900-6B: Plate Magnet for 2.75" Glue and Snap casing.

1900-6C: Plate Magnet for 3.34" Glue and Snap casing.

1900-7A: Spider Magnet (double-ended) for 1" PVC pipe.

1900-7B: Spider Magnet (double-ended) for use over 2.75" Inclinometer casing. 1900-7C: Spider Magnet (double-ended) for use over 3.34" Inclinometer casing. 07-062G-E: Galvanized Aircraft Cable, 1/16"

07-062G-M: Galvanized Aircraft Cable, 1/16"

1900-10: Access tube top cap.

1900-11-30M: Reed switch probe, with 30 meter measurement tape.
1900-11-50M: Reed switch probe, with 50 meter measurement tape.
1900-11-100M: Reed switch probe, with 100 meter measurement tape.
1900-11-150M: Reed switch probe, with 150 meter measurement tape.
1900-11-200M: Reed switch probe, with 200 meter measurement tape.
1900-11-200E: Reed switch probe, with 100' measurement tape.
1900-11-25E: Reed switch probe, with 125' measurement tape.
1900-11-200E: Reed switch probe, with 200' measurement tape.
1900-11-200E: Reed switch probe, with 200' measurement tape.
1900-11-300E: Reed switch probe, with 300' measurement tape.

A typical Model 1900 installation.

GEOKON

www.geokon.com e: info@geokon.com p: +1.603.448.1562